2,368 research outputs found

    Onset of J/ψJ/\psi Melting in Quark-Gluon Fluid at RHIC

    Full text link
    A strong J/ψJ/\psi suppression in central Au+Au collisions has been observed by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). We develop a hydro+J/ψJ/\psi model in which hot quark-gluon matter is described by the full (3+1)-dimensional relativistic hydrodynamics and J/ψJ/\psi is treated as an impurity traversing through the matter. The experimental J/ψJ/\psi suppression pattern in mid-rapidity is reproduced well by the sequential melting of χc\chi_{\rm c}, ψ\psi', and J/ψJ/\psi in dynamically expanding fluid. The melting temperature of directly produced J/ψJ/\psi is well constrained by the participant-number dependence of the J/ψJ/\psi suppression and is found to be about 2.Tc2.T_{\rm c} with TcT_{\rm c} being the pseudo-critical temperature.Comment: 5 pages, 5 figures, Submitted to Phys. Rev. C. (Rapid Communication

    Can transport peak explain the low-mass enhancement of dileptons at RHIC?

    Full text link
    We propose a novel relation between the low-mass enhancement of dielectrons observed at PHENIX and transport coefficients of QGP such as the charge diffusion constant DD and the relaxation time τJ\tau_{\rm J}. We parameterize the transport peak in the spectral function using the second-order relativistic dissipative hydrodynamics by Israel and Stewart. Combining the spectral function and the full (3+1)-dimensional hydrodynamical evolution with the lattice EoS, theoretical dielectron spectra and the experimental data are compared. Detailed analysis suggests that the low-mass dilepton enhancement originates mainly from the high-temperature QGP phase where there is a large electric charge fluctuation as obtained from lattice QCD simulations.Comment: To appear in the conference proceedings for Quark Matter 2011, May 23 - May 28, Annecy, Franc

    What information can we obtain from the yield ratio π/π+\pi^-/\pi^+ in heavy-ion collisions ?

    Full text link
    The recently reported data on the yield ratio π/π+\pi^-/\pi^+ in central rapidity region of heavy-ion collisions are analyzed by theoretical formula which accounts for Coulomb interaction between central charged fragment (CCF) consisting of nearly stopped nucleons with effective charge Z_{\mbox{\scriptsize eff}} and charged pions produced in the same region of the phase space. The Coulomb wave function method is used instead of the usual Gamow factor in order to account for the finite production range of pions, β\beta. For Gaussian shape of the pion production sources it results in a quasi-scaling in β\beta and Z_{\mbox{\scriptsize eff}} which makes determination of parameters β\beta and Z_{\mbox{\scriptsize eff}} from the existing experimental data difficult. Only sufficiently accurate data taken in the extreme small mTm_{\scriptscriptstyle T}-mπm_{\pi} region, where this quasi-scaling is broken, could be used for this purpose.Comment: 7 pages, Latex type, 8 figure

    Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS

    Get PDF
    Production probabilities for strange clusters and strange matter in Au+Au collisions at AGS energy are obtained in the thermal fireball model. The only parameters of the model, the baryon chemical potential and temperature, were determined from a description of the rather complete set of hadron yields from Si+nucleus collisions at the AGS. For the production of light nuclear fragments and strange clusters the results are similar to recent coalescence model calculations. Strange matter production with baryon number larger than 10 is predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures

    Experimental Signature of Medium Modifications for rho and omega Mesons in the 12 GeV p + A Reactions

    Full text link
    The invariant mass spectra of e+e- pairs produced in 12-GeV proton-induced nuclear reactions are measured at the KEK Proton-Synchrotron. On the low-mass side of the omega meson peak, a significant enhancement over the known hadronic sources has been observed. The mass spectra, including the excess, are well reproduced by a model that takes into account the density dependence of the vector meson mass modification, as theoretically predicted.Comment: 4 pages, 3 figures, Version accepted for Physical Review Lette

    Development of Thick-foil and Fine-pitch GEMs with a Laser Etching Technique

    Full text link
    We have produced thick-foil and fine-pitch gas electron multipliers (GEMs) using a laser etching technique. To improve production yield we have employed a new material, Liquid Crystal Polymer, instead of polyimide as an insulator layer. The effective gain of the thick-foil GEM with a hole pitch of 140 um, a hole diameter of 70 um, and a thickness of 100 um reached a value of 10^4 at an applied voltage of 720 V. The measured effective gain of the thick-foil and fine-pitch GEM (80 um pitch, 40 um diameter, and 100 um thick) was similar to that of the thick-foil GEM. The gain stability was measured for the thick-foil and fine-pitch GEM, showing no significant increase or decrease as a function of elapsed time from applying the high voltage. The gain stability over 3 h of operation was about 0.5%. Gain mapping across the GEM showed a good uniformity with a standard deviation of about 4%. The distribution of hole diameters across the GEM was homogeneous with a standard deviation of about 3%. There was no clear correlation between the gain and hole diameter maps.Comment: 21 pages, 9 figure

    Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC)

    Get PDF
    We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with 3 kinds of gases (Ar(90%)-CH4(10%), Ar(70%)-C2H6(30%) and CF4). Detection efficiency of 99%, and spatial resolution of 79 μ\mum in the pad-row direction and 313 μ\mum in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described.Comment: 18 pages, 12 figures, published online in Nucl. Instr. and Meth.
    corecore